

MATHEMATICS P2

JUNE 2014 – COMMON TEST

MEMORANDUM

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 125

This memorandum consists of 11 pages.

1.1.1	$AC^2 = (-1 - 4)^2 + (-4 - 1)^2 = 9 + 9 = 45$		✓ correct substitution into
	$AC = \sqrt{18}$		distance formula $\sqrt{18}$
	$= 3\sqrt{2}$	(3)	√answer
1.1.2	M is $\left(\frac{1-2}{2}; \frac{4-2}{2}\right) = \left(\frac{-1}{2}; 1\right)$	(2)	√√answer
1.1.3	Gradient of AB = $\frac{-2-4}{-2-1} = \frac{-6}{-3} = 2$		$\checkmark m_{AB} = 2$
	\therefore gradient of \perp bisector is $\frac{-1}{2}$		$\sqrt{m_{\perp \text{bisector of AB}}} = -\frac{1}{2}$
	(obviously it passes through M) (-1)		
	$\left(\frac{-1}{2};1\right)$		
	$y = -\frac{1}{2}x + c$		
	Substitute $1 = \left(\frac{-1}{2}\right)\left(\frac{-1}{2}\right) + c$		\checkmark substitution of m
	$c = 1 - \frac{1}{4}$		and M into equation of line
	$=\frac{3}{4}$		
	Equation is $y = -\frac{1}{2}x + \frac{3}{4}$	(4)	√answer
1.2	$x^{2} - 2x + 1 + y^{2} + 2y + 1 = 2x - 2y$		$\sqrt{x^2 - 4x + 4}$
	$x^{2} - 4x + y^{2} + 4y = -2$ $x^{2} - 4x + 4 + y^{2} + 4y + 4 = -2 + 4 + 4$		$\sqrt{v^2 + 4v + 4}$
	$(x-2)^2 + (y+2)^2 = 6$		$\sqrt{(x-2)^2}$ $\sqrt{(y+2)^2}$
	\therefore centre is $(2; -2)$ and radius $= \sqrt{6}$	(6)	✓ answer: centre ✓ answer: radius
		[15]	

$\frac{-4-1}{p+2} = \frac{0-2}{5-3}$ $-2(p+2) = (-5)(2)$ $-2p-4 = -10$ $-2p = -6$ $\therefore p = 3$ $2.1.2$ $JK^2 = (3+2)^2 + (-4-1)^2 = 50$ $LM^2 = (2-0)^2 + (3-5)^2 = 8$ $JK : LM = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2}$ $= 5 : 2$ $2.1.3$ Diagonals of a parallelogram bisect each other $Midpoint of JL : \left(\frac{3}{2}; \frac{1}{2}\right)$ $This is the same midpoint for MQ:$ $Thus \frac{x+3}{2} = \frac{3}{2} ; \frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0 \therefore y = -1$ Therefore Q is Q(0; -1) $2.1.4$ Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. (2) $2.1.5$ 90° since KM is a vertical line (4) $ximplification$ $x correct substitution in each gradient x correct substitution in to substi$	2.1.1	Since IV // I M M - M	(aquating gradients
$-2(p+2) = (-5)(2)$ $-2p-4 = -10$ $-2p = -6$ $\therefore p = 3$ $2.1.2$ $1 \text{ JK}^2 = (3+2)^2 + (-4-1)^2 = 50$ $1 \text{ LM}^2 = (2-0)^2 + (3-5)^2 = 8$ $1 \text{ JK} : 1 \text{ LM} = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2}$ $= 5 : 2$ $2.1.3$ Diagonals of a parallelogram bisect each other Midpoint of JL : $\left(\frac{3}{2}, \frac{1}{2}\right)$ This is the same midpoint for MQ: $1 \text{ Thus } \frac{x+3}{2} = \frac{3}{2} ; \frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0 \therefore y = -1$ Therefore Q is Q(0; -1) Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 $90^{\circ} \text{ since KM is a vertical line}$ $2.1.6$ For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = -\frac{1}{7}$ $\therefore k-1 = -\frac{3}{7}$ (4) *simplification *simplification *correct substitution into distance form. *\sqrt{550}\$ \$\sqrt{5}\$ \$\sqrt{0}\$ \$\sqrt{0}\$ \$\sqrt{2}\$ \$\sqrt{1}\$ \$\sqrt{2}\$ \$\sqrt{1}\$ \$\sqrt{2}\$ \$\sqrt{2}\$ \$\sqrt{2}\$ \$\sqrt{1}\$ \$\sqrt{2}\$ \$\sqrt{3}\$ \$\sqrt{2}\$	2.1.1	Since JK // LM, $M_{JK} = M_{LM}$ -4-1 0 - 2	✓ equating gradients
$-2(p+2) = (-5)(2)$ $-2p-4 = -10$ $-2p = -6$ $\therefore p = 3$ $2.1.2$ $1 \text{ JK}^2 = (3+2)^2 + (-4-1)^2 = 50$ $1 \text{ LM}^2 = (2-0)^2 + (3-5)^2 = 8$ $1 \text{ JK} : 1 \text{ LM} = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2}$ $= 5 : 2$ $2.1.3$ Diagonals of a parallelogram bisect each other Midpoint of JL : $\left(\frac{3}{2}, \frac{1}{2}\right)$ This is the same midpoint for MQ: $1 \text{ Thus } \frac{x+3}{2} = \frac{3}{2} ; \frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0 \therefore y = -1$ Therefore Q is Q(0; -1) Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 $90^{\circ} \text{ since KM is a vertical line}$ $2.1.6$ For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = -\frac{1}{7}$ $\therefore k-1 = -\frac{3}{7}$ (4) *simplification *simplification *correct substitution into distance form. *\sqrt{550}\$ \$\sqrt{5}\$ \$\sqrt{0}\$ \$\sqrt{0}\$ \$\sqrt{2}\$ \$\sqrt{1}\$ \$\sqrt{2}\$ \$\sqrt{1}\$ \$\sqrt{2}\$ \$\sqrt{2}\$ \$\sqrt{2}\$ \$\sqrt{1}\$ \$\sqrt{2}\$ \$\sqrt{3}\$ \$\sqrt{2}\$		$\frac{-\frac{4}{n+2}}{n+2} = \frac{6}{5-3}$	✓✓ substitution in
$-2p-4=-10$ $-2p=-6$ $\therefore p=3$ 2.1.2 $JK^2 = (3+2)^2 + (-4-1)^2 = 50$ $LM^2 = (2-0)^2 + (3-5)^2 = 8$ $JK : LM = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2}$ $= 5 : 2$ $2.1.3 Diagonals of a parallelogram bisect each other Midpoint of JL : \left(\frac{3}{2} : \frac{1}{2}\right) This is the same midpoint for MQ: Thus \frac{x+3}{2} = \frac{3}{2} ; \frac{y-2}{2} = -\frac{1}{2} \therefore x=0 \qquad \therefore y=-1 Therefore Q is Q(0; -1) 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is x=3. 2.1.5 90^\circ \text{ since KM is a vertical line} 2.1.6 For collinearity; m_{JR} = m_{JL} m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)} = \frac{k-1}{3} = -\frac{1}{7} \therefore k-1 = -\frac{3}{7} \checkmark \text{ correct substitution into distance form.} \checkmark \sqrt{50} \checkmark \sqrt{50} \checkmark \sqrt{50} \checkmark \sqrt{50} \checkmark \sqrt{8} \checkmark \text{ ratio} \checkmark \sqrt{3} : \frac{1}{2} : \frac{1}{2} \checkmark \frac{3}{2} : \frac{1}{2} : \frac{1}{2} \checkmark \frac{x+3}{2} = \frac{3}{2} \checkmark \frac{y-2}{2} = -\frac{1}{2} \checkmark \text{ answer OR answer only (if done by inspection) - full marks} \checkmark \text{ answer} \checkmark \text{ equating: } m_{JR} = m_{JL} \checkmark m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)} \checkmark \text{ simplification} \checkmark \text{ simplification}$			each gradient
$ \begin{array}{c} -2p = -6 \\ \therefore p = 3 \\ \hline \\ 2.1.2 \\ \hline \\ LM^2 = (2-0)^2 + (3-5)^2 = 8 \\ \hline \\ JK : LM = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2} \\ \hline \\ = 5 : 2 \\ \hline \\ \\ This is the same midpoint for MQ: \\ \hline \\ Thus \frac{x+3}{2} = \frac{3}{2} : \frac{y-2}{2} = -\frac{1}{2} \\ \hline \\ \therefore x = 0 \qquad \therefore y = -1 \\ \hline \\ Therefore Q is Q(0; -1) \\ \hline \\ 2.1.4 \\ \hline \\ Since the x coordinates of K and M are both 3, it follows the equation of KM is x = 3. \begin{array}{c} x = 3 \\ \hline \\$			(-:1: :: +:
2.1.2 $ JK^2 = (3+2)^2 + (-4-1)^2 = 50 $ $LM^2 = (2-0)^2 + (3-5)^2 = 8 $ $JK : LM = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2} $ $= 5 : 2 $ $ This is the same midpoint for MQ: $ $Thus \frac{x+3}{2} = \frac{3}{2} : \frac{y-2}{2} = -\frac{1}{2} \therefore x = 0 : y = -1 Therefore Q is Q(0; -1) 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is x = 3. This is a vertical line 2.1.5 90^\circ \text{ since KM is a vertical line} 2.1.6 For collinearity; $			simplification
2.1.2 $JK^2 = (3+2)^2 + (-4-1)^2 = 50$ $LM^2 = (2-0)^2 + (3-5)^2 = 8$ $JK : LM = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2}$ $= 5 : 2$ 2.1.3 Diagonals of a parallelogram bisect each other $Midpoint of JL : \left(\frac{3}{2}, \frac{1}{2}\right)$ $This is the same midpoint for MQ:$ $Thus \frac{x+3}{2} = \frac{3}{2} : \frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0 : y = -1$ $Therefore Q is Q(0; -1)$ $2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is x = 3. 2.1.5 90^{\circ} since KM is a vertical line 2.1.6 For collinearity; m_{JR} = m_{JL} m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)} = \frac{k-1}{3} = -\frac{1}{7} \therefore k-1 = -\frac{3}{7} (5) \sqrt{50} \sqrt{50} \sqrt{8} \sqrt{150} \sqrt{9} \sqrt{15} \sqrt{2} : \frac{1}{2} \sqrt{2} : \frac{1}{2} \sqrt{2} = -\frac{1}{2} \sqrt{2} = -\frac{1}$			
into distance form. $LM^{2} = (2 - 0)^{2} + (3 - 5)^{2} = 8$ $JK : LM = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2}$ $= 5 : 2$ $2.1.3$ Diagonals of a parallelogram bisect each other Midpoint of JL : $\left(\frac{3}{2}; \frac{1}{2}\right)$ $This is the same midpoint for MQ:$ $Thus \frac{x + 3}{2} = \frac{3}{2} ; \frac{y - 2}{2} = -\frac{1}{2}$ $\therefore x = 0 \qquad \therefore y = -1$ $Therefore Q is Q(0; -1)$ $2.1.4$ Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. $2.1.5$ 90° since KM is a vertical line $2.1.6$ For collinearity; $m_{JR} = \frac{k - 1}{1 - (-2)} = \frac{0 - 1}{5 - (2)}$ $= \frac{k - 1}{3} = \frac{-1}{7}$ $\therefore k - 1 = \frac{-3}{7}$ into distance form. $\sqrt{50}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{1}$ $\frac{1}{2}; \frac{1}{2}$ $\sqrt{2} = \frac{3}{2}$ $\sqrt{2} = \frac{3}{2}$ $\sqrt{2} = -\frac{1}{2}$ $\sqrt{3} = \frac{3}{2}$ $\sqrt{3} = \frac{1}{2}$ $\sqrt{3} = \frac{3}{2}$ $\sqrt{3} $	2.1.2		(
$LM^{2} = (2-0)^{2} + (3-5)^{2} = 8$ $JK : LM = \sqrt{50} : \sqrt{8} = 5\sqrt{2} : 2\sqrt{2}$ $= 5 : 2$ $2.1.3$ Diagonals of a parallelogram bisect each other $Midpoint of JL : \left(\frac{3}{2}; \frac{1}{2}\right)$ This is the same midpoint for MQ: $Thus \frac{x+3}{2} = \frac{3}{2} ; \frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0 \therefore y = -1$ Therefore Q is Q(0; -1) $Therefore Q is Q(0; -1)$ $2.1.4$ Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. (2) $2.1.5$ 90° since KM is a vertical line $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ (5) $\sqrt{\frac{3}{2}; \frac{1}{2}}$ $\sqrt{\frac{3}{2}; \frac{1}{2}; \frac{1}{2}}$ $\sqrt{\frac{3}{2}; \frac{1}{2}; \frac{1}{2}}$ $\sqrt{\frac{3}{2}; \frac{1}{2}; \frac{1}{2}; \frac{1}{2}$ $$	2.1.2		
JK: LM = $\sqrt{50}$: $\sqrt{8}$ = $5\sqrt{2}$: $2\sqrt{2}$		$LM^{2} = (2 - 0)^{2} + (3 - 5)^{2} = 8$ (5)	
2.1.3 Diagonals of a parallelogram bisect each other Midpoint of JL: $\left(\frac{3}{2}; \frac{1}{2}\right)$ This is the same midpoint for MQ: Thus $\frac{x+3}{2} = \frac{3}{2}$; $\frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0$ $\therefore y = -1$ Therefore Q is Q(0; -1) 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line $m_{JR} = m_{JL}$ $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $\Rightarrow \frac{k-1}{1-(-2)}$ $\Rightarrow \frac{k-1}{7}$		JK : LM = $\sqrt{50}$: $\sqrt{8}$ = $5\sqrt{2}$: $2\sqrt{2}$	
Diagonals of a parallelogram bisect each other Midpoint of JL: $\left(\frac{3}{2}, \frac{1}{2}\right)$ This is the same midpoint for MQ: Thus $\frac{x+3}{2} = \frac{3}{2}$; $\frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0$ $\therefore y = -1$ Therefore Q is Q(0; -1) 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ Diagonals of a parallelogram bisect each other $\checkmark \left(\frac{3}{2}; \frac{1}{2}\right)$ $\checkmark \frac{3}{2}; \frac{1}{2}$ $\checkmark \frac{x+3}{2} = \frac{3}{2}$ $\checkmark \frac{y-2}{2} = -\frac{1}{2}$ $\checkmark \text{ answer OR answer only (if done by inspection) – full marks}$ $\checkmark \text{ answer}$ $\checkmark \text{ answer}$ $\checkmark \text{ answer}$ $\checkmark \text{ answer}$ $\checkmark \text{ simplification}$ $\checkmark \text{ simplification}$		= 5 : 2	
Midpoint of JL : $\left(\frac{3}{2}; \frac{1}{2}\right)$ This is the same midpoint for MQ: Thus $\frac{x+3}{2} = \frac{3}{2}$; $\frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0$ $\therefore y = -1$ Therefore Q is Q(0; -1) 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ $\checkmark \left(\frac{3}{2}; \frac{1}{2}\right)$ $\checkmark \frac{3}{2}; \frac{1}{2}; \frac{1}{2$			√answer
This is the same midpoint for MQ: Thus $\frac{x+3}{2} = \frac{3}{2}$; $\frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0$ $\therefore y = -1$ Therefore Q is Q(0; -1) Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ This is the same midpoint for MQ: $\sqrt{\frac{x+3}{2}} = \frac{3}{2}$ $\sqrt{\frac{y-2}{2}} = -\frac{1}{2}$ $\frac{$	2.1.3	Diagonals of a parallelogram bisect each other	
This is the same midpoint for MQ: Thus $\frac{x+3}{2} = \frac{3}{2}$; $\frac{y-2}{2} = -\frac{1}{2}$ $\therefore x = 0$ $\therefore y = -1$ Therefore Q is Q(0; -1) Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ This is the same midpoint for MQ: $\sqrt{\frac{x+3}{2}} = \frac{3}{2}$ $\sqrt{\frac{y-2}{2}} = -\frac{1}{2}$ $\frac{$		Midnaint of H (3.1)	$\sqrt{\left(\frac{3}{2};\frac{1}{2}\right)}$
Thus $\frac{x+3}{2} = \frac{3}{2}$; $\frac{y-2}{2} = -\frac{1}{2}$ $\checkmark \frac{y-2}{2} = -\frac{1}{2}$ $\checkmark \frac{y-2}{2} = -\frac{1}{2}$ $\checkmark \text{answer OR answer}$ Therefore Q is Q(0; -1) (5) only(if done by inspection) – full marks 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. (2) 2.1.5 90° since KM is a vertical line (1) $\checkmark \text{answer}$ 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $\checkmark m_{JR} = \frac{k-1}{1-(-2)}$ $\checkmark \text{simplification}$ $\checkmark \text{answer}$ $\therefore k-1 = \frac{-3}{7}$		Midpoint of JL . $\left(\frac{1}{2},\frac{1}{2}\right)$	` ′
Thus $\frac{x+3}{2} = \frac{3}{2}$; $\frac{y-2}{2} = -\frac{1}{2}$ $\checkmark \frac{y-2}{2} = -\frac{1}{2}$ $\checkmark \frac{y-2}{2} = -\frac{1}{2}$ $\checkmark \text{answer OR answer}$ Therefore Q is Q(0; -1) (5) only(if done by inspection) – full marks 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. (2) 2.1.5 90° since KM is a vertical line (1) $\checkmark \text{answer}$ 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $\checkmark m_{JR} = \frac{k-1}{1-(-2)}$ $\checkmark \text{simplification}$ $\checkmark \text{answer}$ $\therefore k-1 = \frac{-3}{7}$		This is the same midpoint for MO:	$\sqrt{\frac{x+3}{2}} = \frac{3}{2}$
Therefore Q is Q(0; -1) 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ (5) (5) (5) (5) (6) (7) (8) (9) (9) (9) (10) (11) (2) (2) (2) (2) (2) (3) (4) (4) (5) (5) (6) (7) (8) (9) (9) (9) (10) (11) (12) (13) (14) (15) (16) (16) (16) (17) (17) (18) (18) (19) (19) (20) (21) (21) (22) (3) (4) (4) (4) (5) (5) (5) (6) (7) (8) (9) (9) (19) (19) (19) (20) (21) (2) (2) (2) (2) (3) (4) (5) (6) (7) (8) (9) (9) (9) (19) (19) (19) (19) (19) (20) (21) (21) (22) (23) (24) (24) (25) (26) (26) (27) (27) (28) (29) (29) (29) (20) (
Therefore Q is Q(0; -1) Therefore Q is Q(0;			$\sqrt{\frac{2}{2}} = -\frac{1}{2}$
inspection) – full marks 2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ inspection) – full marks $\checkmark \text{ answer}$ $\checkmark \text{ answer}$ $\checkmark \text{ equating: } m_{JR} = m_{JL}$ $\checkmark m_{JR} = \frac{k-1}{1-(-2)}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$			
2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ $marks$ \checkmark answer \checkmark answer \checkmark equating: $m_{JR} = m_{JL}$ \checkmark $m_{JR} = \frac{k-1}{1-(-2)}$ \checkmark simplification \checkmark answer		Therefore Q is $Q(0; -1)$ (5)	
2.1.4 Since the x coordinates of K and M are both 3, it follows the equation of KM is $x = 3$. 2.1.5 90° since KM is a vertical line 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ Since the x coordinates of K and M are both 3, it follows the equations the equation of KM is $x = 3$. $\checkmark \text{ answer}$ $\checkmark \text{ equating: } m_{JR} = m_{JL}$ $\checkmark m_{JR} = \frac{k-1}{1-(-2)}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$			
2.1.5 90° since KM is a vertical line (1) \checkmark answer 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ (2) $\checkmark \text{ answer}$ $\checkmark \text{ equating: } m_{JR} = m_{JL}$ $\checkmark m_{JR} = \frac{k-1}{1-(-2)}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$	2.1.4	Since the <i>x</i> coordinates of K and M are both 3, it follows the	
2.1.5 90° since KM is a vertical line (1) \checkmark answer 2.1.6 For collinearity; $m_{JR} = m_{JL}$ $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ (1) \checkmark answer $\checkmark \text{ equating: } m_{JR} = m_{JL}$ $\checkmark m_{JR} = \frac{k-1}{1-(-2)}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$			√√answer
2.1.6 For collinearity; $m_{JR} = m_{JL}$ \swarrow equating: $m_{JR} = m_{JL}$ \swarrow $m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ \swarrow simplification \swarrow answer \swarrow	2.1.5		(
$m_{JR} = \frac{k-1}{1-(-2)} = \frac{0-1}{5-(2)}$ $= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ $(3) Indiagonal Marketing for a sign of the marketi$	2.1.5	90 since KM is a vertical line (1)	v answer
$= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$	2.1.6	For collinearity; $m_{\rm JR} = m_{\rm JL}$	\checkmark equating: $m_{JR} = m_{JL}$
$= \frac{k-1}{3} = \frac{-1}{7}$ $\therefore k-1 = \frac{-3}{7}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$		k-1 - 0-1	k-1
$\frac{1}{3} = \frac{1}{7}$ $\therefore k - 1 = \frac{-3}{7}$ $ \checkmark \text{answer} $		$m_{\rm JR} - \frac{1}{1 - (-2)} - \frac{5}{5 - (2)}$	$m_{JR} - \frac{1 - (-2)}{1 - (-2)}$
$\frac{1}{3} = \frac{1}{7}$ $\therefore k - 1 = \frac{-3}{7}$ $ \checkmark \text{answer} $			() 110
$\therefore k-1=\frac{-3}{7}$		$=\frac{k-1}{2} = \frac{-1}{2}$	
		3	· alls well
$\therefore k = \frac{-3}{2} + 1$		$ \ldots K - 1 = \frac{1}{7} $	
1 · · · · · · · · · · · · · · · · · · ·		$k = \frac{-3}{4} + 1$	
7		7	
4		4	
$k = \frac{4}{7} \tag{4}$		$k = \frac{\cdot}{7} \tag{4}$	

2.2.1	Q $(x; 2)$ (radius QR \perp tangent)	$\checkmark y_Q = 2$
	Substitute (x; 2) in $3x + 4y + 7 = 0$:	
	3x + 8 + 7 = 0	✓ substitution: $y = 2$
	x = -5	$\sqrt{x} = -5$
	$\therefore Q(-5;2)$	
	Radius = $QR = 0 - (-5) = 5$	✓ radius
	: Equation is $(x + 5)^2 + (y - 2)^2 = 25$ (5)	✓ equation
		v equation
2.2.2	QR = 5 units	
	$d = 2 \times radius$	
	$\therefore WZ = 10 \text{ units} \checkmark \tag{1}$	
	[27]	
		✓answer

3.1	$\sin 15^{\circ} = \sin (45^{\circ} - 30^{\circ})$ $= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$ $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$ $= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$ $= \frac{\sqrt{3-1}}{2\sqrt{2}} x \frac{\sqrt{2}}{\sqrt{2}}$ $= \frac{\sqrt{6} - \sqrt{2}}{4}$ OR $\sin 15^{\circ} = \cos 75^{\circ}$ $= \cos (45^{\circ} + 30^{\circ})$ $= \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \cos 30^{\circ}$ $= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right)$	✓ 15° as 45° – 30° ✓ correct expansion ✓ correct special angle values ✓ 75° as 45° + 30° ✓ correct expansion
	$= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$ $= \frac{\sqrt{3} - 1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $= \frac{\sqrt{6} - \sqrt{2}}{4}$ (3)	✓ correct special angle values
3.2	$ \frac{\tan (180^{\circ} + \theta) \cos (360^{\circ} - \theta)}{\sin (180^{\circ} - \theta) \cdot \cos (90^{\circ} + \theta) + \cos (540^{\circ} + \theta) \cdot \cos (-\theta)} $ $ \frac{\tan \theta \cdot (\cos \theta)}{(\sin \theta) \cdot (-\sin \theta) - \cos \theta \cdot \cos \theta} $ $ = \frac{\frac{\sin \theta}{\cos \theta} \times \cos \theta}{-\sin^{2} \theta - \cos^{2} \theta} $ $ = \frac{\sin \theta}{-(\sin^{2} \theta + \cos^{2} \theta)} $ $ = -\sin \theta \tag{9} $	For each reduction : $\checkmark \tan \theta \checkmark \cos \theta$ $\checkmark \sin \theta \checkmark - \sin \theta$ $\checkmark - \cos \theta \checkmark \cos \theta$ $\checkmark \tan \theta = \frac{\sin \theta}{\cos \theta}$ $\checkmark \sin^2 \theta + \cos^2 \theta$ $\checkmark \text{answer}$

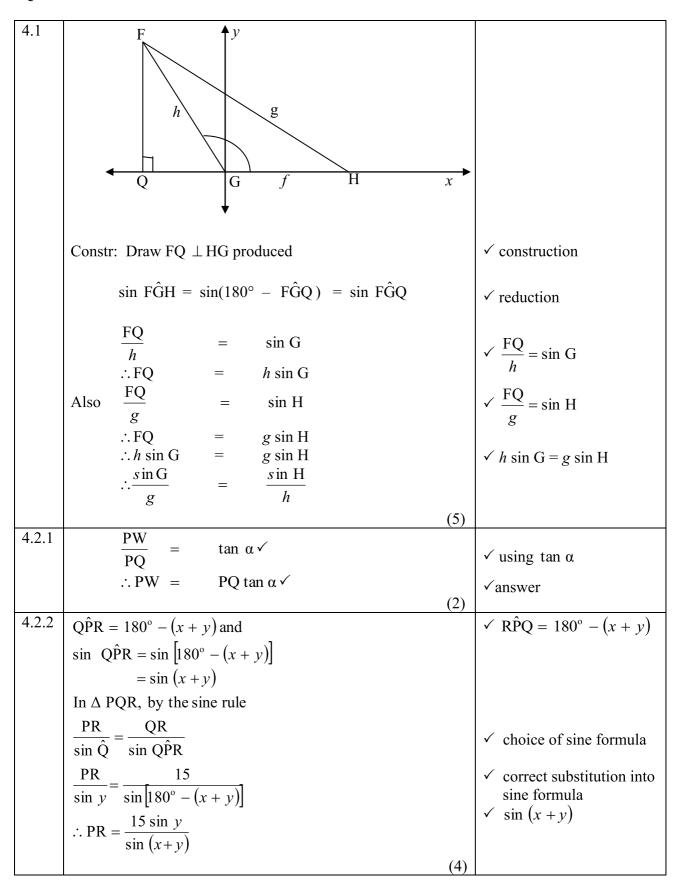
3.3
$$\sin (45^{\circ} + x) \cdot \sin(45^{\circ} - x) = \frac{1}{2} \cos 2x$$

$$LHS = \sin (45^{\circ} + x) \cdot \sin (45^{\circ} - x)$$

$$= (\sin 45^{\circ} \cos x + \cos 45^{\circ} \sin x) \sin 45^{\circ} \cos x - \sin x \cos 45^{\circ})$$

$$= (\frac{1}{\sqrt{2}} \cdot \cos x + \frac{1}{\sqrt{2}} \cdot \sin x) \cdot (\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x)$$

$$= (\frac{1}{2} \cos^{2} x - \frac{1}{2} \sin^{2} x)$$

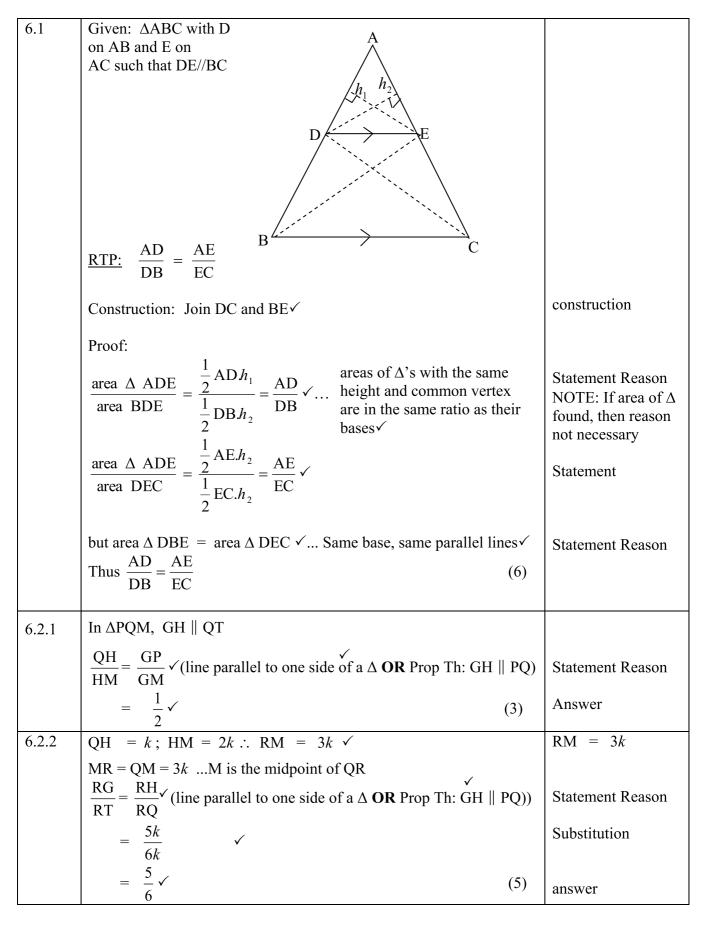

$$= (\frac{1}{2} \cos^{2} x - \sin^{2} x)$$

$$= (\frac{1}{2} \cos 2x)$$

$$= RHS$$

$$(5)$$

3.4	$\frac{\sin 33^{\circ}}{\sin 11^{\circ}} - \frac{\cos 33^{\circ}}{\cos 11^{\circ}}$		
	$= \frac{\sin 33^{\circ}.\cos 11^{\circ} - \cos 33^{\circ}.\sin 11^{\circ}}{\sin 11^{\circ}.\cos 11^{\circ}}$		✓ sin 33°.cos 11° – cos 33°.sin 11° ✓ sin 11°.cos 11°
	$= \frac{\sin\left(33^{\circ} - 11^{\circ}\right)}{\sin 11^{\circ} \cos 11^{\circ}}$		$\checkmark \sin \left(33^{\circ}-11^{\circ}\right)$
	$= \frac{\sin 22^{\circ}}{\sin 11^{\circ} \cos 11^{\circ}}$		✓ sin 22°
	$= \frac{2 \sin 11^{\circ} \cos 11^{\circ}}{\sin 11^{\circ} \cos 11^{\circ}}$		✓ 2 sin 11° cos 11°
	= 2	(6)	✓ answer
3.5	$\tan 3x$		
	$\frac{\tan 3x}{\tan 24^o} = 1$		✓ tan 24°
	$\tan 3x = \tan 24^{\circ}$		$\checkmark \tan 3x = \tan 24^\circ$
	$3x = 24^{\circ} + k \cdot 180^{\circ}$		$\checkmark 3x = 24^{\circ} + k \cdot 180^{\circ}$
	$\therefore x = 8^{\circ} + k \cdot 60^{\circ}, k \in \mathbb{Z}$	(5) [28]	$\checkmark : x = 8^{\circ} \checkmark k . 60^{\circ}, k \in \mathbb{Z}$


tilCiliatics/1 2	O
	NSC – Memorandu

4.2.3	PW	=	PR tan α from 3.3.1	
	PW	=	$\frac{15 \sin y}{\sin (x+y)}$. $\tan \alpha$	$\checkmark \text{ PW} = \frac{15 \sin y}{\sin (x+y)} \cdot \tan \alpha$
		=	$\frac{15 \sin y}{\sin (y+y)} \cdot \tan \alpha$	
		=	$\frac{15 \sin y}{\sin 2y} \cdot \tan \alpha$	✓ simplification
		=	$\frac{15\sin y}{2\sin y.\cos y}.\tan \alpha$	$\checkmark \sin 2y = 2\sin y.\cos y$
		=	$\frac{7,5}{\cos y}$. $\tan \alpha$	
	∴ PW	=	$7.5 \frac{\tan \alpha}{\cos y}$	
			(3) [14]	

5.1	Supplementary√	(1)	Answer
5.2.1	It is the angle between tangent and radius. ✓	(1)	Answer
5.2.2	$\hat{S}_3 + \hat{S}_4 = 90^\circ \dots \text{Tan} \perp \text{radius}$		
	$\hat{N}_1 + \hat{N}_2 = 90^{\circ} \checkmark \dots \text{ Tan } \perp \text{ radius } \checkmark$		Statement Reason
	$\hat{S}_3 + \hat{S}_4 + \hat{N}_1 + \hat{N}_2 = 90^\circ + 90^\circ \checkmark$		Statement
	= 180° ∴ RNOS is a cyclic quadrilateral opp ∠ quad supplement	ntary √ (4)	Reason
5.2.3	$\hat{S}_1 = x$		
	$S_1 = \hat{N}_2 = x \checkmark \text{ Tan chord theorem} \checkmark$		Statement Reason
	$\hat{N}_2 = S_3 = x \checkmark \dots \text{ base } \angle \text{'s of isosceles } \triangle \text{ OSN} \checkmark$		Statement Reason
	$\hat{S}_3 = \hat{R}_2 = x \checkmark \angle s$ in same segment \checkmark		Statement Reason
	$\hat{N}_2 = \hat{R}_1 = x \angle$'s in same segment.		Statement Reason
		(8)	
5.2.4	$\hat{O}_1 + \hat{Q}_2 + \hat{N}_2 + \hat{S}_3 = 180^\circ \dots \text{ sum of } \angle \text{'s of } \Delta \text{ OSN} \checkmark$ But $\hat{S}_3 = \hat{N}_2 \dots \angle s$ opp. equal sides \checkmark $\therefore \hat{O}_1 + \hat{O}_2 + 2\hat{S}_3 = 180^\circ$		Statement with reason Statement with reason
	$\hat{O}_1 + \hat{O}_2 + O_3 = 180^\circ \dots \angle$'s on a straight line \checkmark $\therefore \hat{O}_1 + \hat{O}_2 + 2 \hat{S}_3 = \hat{O}_1 + \hat{O}_2 + \hat{O}_3$		Statement with reason
	$\begin{vmatrix} 2 \hat{S}_3 = \hat{O}_3 \checkmark \end{vmatrix}$		$2 \hat{S}_3 = \hat{O}_3$
	$\therefore \hat{\mathbf{S}}_3 = \frac{1}{2} \hat{\mathbf{O}}_3$	(4)	
	OR		
	$\hat{O}_3 = \hat{SRN} ext. \angle s$ of cyclic quad. \checkmark		Statement Reason
	$\hat{R}_2 = \hat{S}_3 \dots \angle s$ in the same segment \checkmark but $SO = ON \dots radii of a circle$		Statement with reason
	$\therefore \qquad \hat{R}_1 = \hat{R}_2 \dots = \text{chords} \; ; \; = \; \angle s \qquad \qquad \checkmark$		Statement with reason
	$\therefore \qquad \hat{S}_3 = \frac{1}{2} \hat{O}_3$		
		(4) [18]	

Common Test June 2014

QUESTION 6

NSC – Memorandum

6.3.1	Let $\hat{Z}_2 = x = \alpha^{\checkmark}$ Tan chord theorem \checkmark		Statement Reason
	Then $\hat{ABX} = 90^{\circ} - \alpha \dots \text{ sum of } \angle \text{'} s \text{ of } \Delta \text{ ABP } \checkmark$		Statement with reason
	But $\hat{Z}_1 = A\hat{B}P$		
	= 90 - α \angle 's opposite equal sides: AZ = AB \checkmark		Statement with reason
	$\hat{Z}_1 + Z_2 = \alpha + 90^\circ - \alpha$ adj. \angle 's on a straight line \checkmark = 90°		Statement with reason
	Thus $\hat{Z}_3 = 90^{\circ}$		
		(5)	
6.3.2	In \triangle AYZ and \triangle AZX		
	1. $\hat{Z}_2 = \hat{X}$ Tan chord theorem \checkmark		Statement with
	2. $\hat{A}_2 = \hat{A}_2$ common \checkmark		reason
			Statement
	3. $\hat{AYZ} = \hat{AZX}$ (remaining angles) $\therefore \Delta \hat{AYZ} / / / \Delta \hat{AZX} / / / / / $		Statement with
	A X Z / / A Z X Z, Z, Z	(3)	reason
6.3.3	$\therefore \frac{AZ}{AY} = \frac{AX}{AZ} \Delta_S \parallel \mid \text{ sides in proportion } \checkmark$		statement
	$\therefore AZ^2 = AY \cdot AX$	(1)	
		[23]	

TOTAL MARKS: [125]